

Hyperviscosity in the BLAST High Order Finite Element Hydrodynamics Code

ALEX LONG¹ WITH ROBERT RIEBEN², VESELIN DOBREV³ AND TZANIO KOLEV³

¹Nuclear Engineering, Oregon State University ²Weapons and Complex Integration, Lawrence Livermore National Laboratory ³ Center for Applied Scientific Computing, Lawrence Livermore National Laboratory

Abstract: Hyperviscosity has proven to be an effective artificial viscosity in several hydrodynamic codes [1]. We adapt hyperviscosity for the high-order finite elemenent curvilinear hydrodynamics code BLAST [2]. The FEM formulation of the operators used in hyperviscosity are shown to converge under mesh refinement. Hyperviscosity can reduce wall heating when used as a limiter and vanishes on smooth problems.

Hyperviscosity

- In order to effectively represent shocks (discontinuities) with the Euler equations it is necessary to use **artificial viscosity**
- Hyperviscosity is a form of artificial viscosity that uses higher-order gradients to "focus" viscosity on the shock region
- Hypervisocsity modifies the viscosity tensor, *Q*, in the momentum and energy equations of Euler's equations:

Momentum Conservation:
$$\rho \frac{\mathrm{D} \mathbf{v}}{\mathrm{d} t} = -\nabla p + \nabla \cdot \mathbf{Q}$$

Energy Conservation:
$$\rho \frac{\mathrm{D}e}{\mathrm{d}t} = -p\left(\nabla \cdot \mathbf{v}\right) + \mathbf{Q} : \nabla \mathbf{v}$$

• Hyperviscosity uses the *s* field, which is the Frobenius Norm of the symmetrized velocity gradient:

$$\epsilon = \frac{1}{2} \left(\nabla v + v \nabla \right)$$
$$s = \sqrt{(\epsilon : \epsilon)}$$

• The bulk and shear viscosity terms both have a coefficient that depends on the Laplacian of the *s* field,:

$$\mu^* = C_{\mu}\rho|\nabla^2(sL^4)|$$

$$\beta^* = C_{\beta}\overline{\rho|\nabla^2(\nabla \cdot u)|L^4H(\nabla \cdot u)}$$

The overbar represents a smoothing operation and ${\cal L}$ is a grid-dependent length scale.

BLAST

The main features of the BLAST hydro code are [2]:

- Supports 2D (triangles, quads) and 3D (tets, hexes) unstructured curvilinear meshes.
- High order field representations.
- Exact discrete energy conservation by construction.
- Reduces to classical staggered-grid hydro under simplifying assumptions.

Laplacian Operator in Discrete Finite Element Space

In the finite element method operators are written in a weak-variational form. The Laplacian of the *s*-field is:

$$x = \Delta s \quad \rightarrow \quad \int x \phi_i = \int \Delta s \phi_i$$

Using integration by parts the right hand side becomes:

$$\int \Delta s \phi_i = -\int_{\Omega} \nabla s \cdot \nabla \phi_i + \int_{\partial \Omega} \nabla s \cdot n \phi_i$$

After replacing s and x with a trial function ϕ_j and inserting some FEM terminology the system system looks like:

$$\mathbf{M}\alpha = \mathbf{S}\beta$$

Where M and S are the mass and stiffness matrices repsectively. Multiple Laplacian operations can be obtained by taking higher powers of $M^{-1}S$.

Discontinuous Velocity Field for Q6 with two mesh refines

Convergence of Discrete Laplacian

- The s field, Δs and $\Delta^2 s$ converge to the analytic solution under mesh refinement on structured and unstructured grids
- The same convergence rates are obtained when the Lumped Mass Matrix is used
- For convergence, the order of the basis function must be greater than or equal to the number of gradient operations: Q_k for v with $\nabla^n v$ where k >= n.

Hyperviscosity as a Limiter in Blast

Artificial viscosity methods based on a single spatial gradient can give too much viscosity in non-schock regions. Hyperviscosity will yield much smaller viscosity in these regions, making it ideal for use as a limiter:

Velocity field for the Taylor-Green problem with hyperviscosity limiter at t=0.75s and convergence plot for different viscosity parameters

Comparison of velocity vs. distance and density vs. distance for Sod problem at t=0.2 with the Q2-Q1 method

Density and viscosity fields for the Noh problem at t=0.6 with the Q2-Q1 method hyperviscosity limiter and a comparison of density fields for the Noh problem

Conclusion

The operations required to form the hyperviscosity coefficients can be performed in the higher-order finite element space. When tuned correctly, hyperviscosity effectively reduces viscous heating in non-shock regions of the problem and does not overdamp shocks.

[1] A. W. Cook, W. H. Cabot, Hyperviscosity for shock-turbulence interactions, Journal of Computational Physics, Volume 203, Issue 2.

[2] V. A. Dobrev, Tz. V. Kolev, and R. N. Rieben. High order curvilinear finite element methods for Lagrangian hydrodynamics. SIAM J. Sci. Comp., 2012. to appear, also available as LLNL technical report LLNL-JRNL-516394.